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STUDIES ON MONOTONE ITERATIVE TECHNIQUE

FOR NONLINEAR SYSTEM OF INITIAL VALUE

PROBLEMS

J. A. Nanware and M. N. Gadsing

Abstract. Nonlinear system of initial value problems involving R-
L fractional derivative is studied. Monotone iterative technique cou-
pled with lower and upper solutions is developed for the problem.
It is successfully applied to study qualitative properties of solutions
of nonlinear system of initial value problem when the function on
the right hand side is nondecreasing.

1. Introduction

Fractional differential equations (FDEs) arise in many scientific dis-
ciplines as the mathematical modeling of system and processes in the
fields of chemistry, physics, electrodynamics of complex medium, aero-
dynamics, polymer rheology [9, 13, 27, 29]. Most of the researchers are
attracted towards fractional differential equations as many phenomena
in various branches of science and engineering are modeled. Many appli-
cations are found in control systems, visco-elasticity, electrochemistry,
pharmacokinetics,food science etc.[10, 14, 27, 29]. Significant contribu-
tions by researchers have been recorded in the monograph of Kilbas et
al.[9]. There are some good methods for studying fractional differen-
tial equations such as power series method, monotone method, com-
positional method and transform method [2, 6, 17, 25, 27, 28, 30]. The
monotone iterative technique[3] is very useful for the investigation of the-
oretical as well as constructive results in the sector. McRae developed
monotone method for Riemann-Liouville fractional differential equations
with initial conditions and studied the qualitative properties of solutions
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of initial value problem (IVP) in [1, 15]. In 2011, Denton et al.[4] de-
veloped monotone method combined with the method of coupled upper
and lower solutions for finite systems of fractional differential equations
with initial conditions. Existence of solutions of Riemann-Liouville frac-
tional differential equations and uniqueness of solutions proved by Lak-
shmikantham and Vatsala [11, 12]. Existence and uniqueness of solu-
tion of Riemann-Liouville fractional differential equations with integral
boundary conditions is also obtained by Nanware et al.[17, 18, 20, 23].
Moreover, Nanware et al.[8, 16, 19, 20, 21, 22, 24, 26] developed mono-
tone method for system of fractional differential equations with various
conditions and successfully applied to study qualitative properties of so-
lutions. Recently, Wei et al.[31, 32] and Nanware et. al.[7], developed
monotone iterative technique to study existence and uniqueness results
for initial value problems and periodic boundary value problems involv-
ing Riemann- Liouville sequential fractional derivative and technique. In
this paper, we develop monotone iterative technique to study existence
and uniqueness of solution of the following nonlinear system with initial
conditions:

(D2qui)(t) = fi(t, u1, u2, D
qu1, D

qu2), t ∈ (0, T ](1.1)

t1−qui(t)|t=0 = u0i , t
1−q(Dqui)(t)|t=0 = u1i , i = 1, 2.(1.2)

where 0 < T <∞, u0i , u
1
i are constants and fi ∈ C([0, T ]×R4), i = 1, 2,

is quasimonotone nondecreasing, Dq is the standard Riemann- Liouville
fractional derivative of order 0 < q ≤ 1. We organize the paper as
follows. In section 2, preliminary definitions and some basic results are
considered. Some important lemmas and comparison results are also
given. In section 3, we develop monotone technique for system of IVP
with Riemann-Liouville fractional differential equation. Existence and
uniqueness of solution of coupled system of IVP are obtained.

2. Preliminaries

In this section, we deduce some preliminary results that will be used
in the next section to attain existence and uniqueness results for the
nonlinear system of initial value problem (1.1)- (1.2). Assume that J =
[0, T ] ⊂ R is a compact interval and

fi(t, u1(t), u2(t), D
qu1(t), D

qu2(t)) ∈ C(J × R4, R), i = 1, 2
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is quasimonotone nondecreasing. Define the following classes:

C([0, T ]) =
{
ui|ui(t) is continuous on [0, T ], ‖ui‖C = max

t∈[0, T ]
|ui(t)|

}
,

C1−q([0, T ]) =
{
ui ∈ C([0, T ]) : t1−qui(t) ∈ C([0, T ]),

|ui‖C1−q = ‖t1−qui(t)‖C
}
,

Cq
1−q([0, T ]) = {ui ∈ C1−q([0, T ]) : t1−qDqui(t) ∈ C([0, T ])}.

Definition 2.1. A function fi(t, u1(t), u2(t), D
qu1(t), D

qu2(t)) ∈
C(J × R4, R), i = 1, 2, J = [0, T ] is said to be quasimonotone nonde-
creasing (nonincreasing) if for each i, ui ≤ vi and uj = vj , i 6= j, then

fi(t, u1, u2, D
qu1(t), D

qu2(t)) ≤ fi(t, v1, v2, Dqv1(t), D
qv2(t))

(fi(t, u1, u2, D
qu1(t), D

qu2(t)) ≥ fi(t, v1, v2, Dqv1(t), D
qv2(t))) .

Definition 2.2. A function v0i = (v01, v
0
2) ∈ Cq

1−q([0, T ]) is called a

lower solution of IVP(1.1)- (1.2) if it satisfies

(D2qv0i )(t) ≤ fi(t, v1(t), v2(t), Dqv1(t), D
qv2(t)), t ∈ (0, T ]

t1−qv0i (t)|t=0 ≤ v0i , t1−qDqv0i (t)|t=0 ≤ v1i .

Definition 2.3. A function w0
i = (w0

1, w
0
2) ∈ Cq

1−q([0, T ]) is called

a upper solution of IVP(1.1)-(1.2), if it satisfies

(D2qw0
i )(t) ≥ fi(t, w1(t), w2(t), D

qw1(t), D
qw2(t)), t ∈ (0, T ]

t1−qw0
i (t)|t=0 ≥ w0

i , t
1−qDqw0

i (t)|t=0 ≥ w1
i .

Definition 2.4. The sector denoted by Ω is defined as

Ω =
[
v0i , w

0
i

]
=
{
ui ∈ Cq

1−q([0, T ]) : v0i ≤ ui ≤ w0
i , t ∈ [0, T ];

t1−qv0i (t)|t=0 ≤ t1−qui(t)|t=0 ≤ t1−qw0
i (t)|t=0,

t1−qDqv0i (t)|t=0 ≤ t1−qDqui(t)|t=0 ≤ t1−qDqw0
i (t)|t=0

}
.

Definition 2.5. Let fi : J × R4 → R be a real valued continuous
function. We say that fi(t, u1(t), u2(t), D

qu1(t), D
qu2(t)) satisfies one

sided Lipschitz condition, if there exist constants Mi, Ni ∈ R, N2
i >

4Mi, such that

fi(t, w1, w2, D
qw1, D

qw2)− fi(t, v1, v2, Dqv1, D
qv2) ≥ −Ni(D

qwi −Dqvi)

−Mi(wi − vi),(2.1)

v0i ≤ vi ≤ wi ≤ w0
i , i = 1, 2.
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Further to ensure the uniqueness of solution of IVP (1.1)−(1.2), there
exist constants Mi, Ni ∈ R, N2

i > 4Mi, such that

fi(t, w1, w2, D
qw1, D

qw2)− fi(t, v1, v2, Dqv1, D
qv2) ≤ Ni(D

qwi −Dqvi)+

Mi(wi − vi),(2.2)

v0i ≤ vi ≤ wi ≤ w0
i .

From conditions (2.1) and (2.2), we conclude that the function fi
satisfies Lipschitz condition if there exists constants Ni, Mi ≥ 0, N2

i >
4Mi such that

|fi(t, w1, w2, D
qw1, D

qw2)− fi(t, v1, v2, Dqv1, D
qv2)| ≤ Ni|Dqwi −Dqvi|+

Mi|wi − vi|.(2.3)

Now, we consider the following result for the linear fractional initial
value problem to obtain existence and uniqueness results of solution of
the IVP (1.1)− (1.2).

Lemma 2.6. [9] Suppose that u(t) ∈ C1−q([0, T ]), then the linear
initial value problem

Dqu(t) +Mu(t) = σ(t), t ∈ (0, T ], t1−qu(t)|t=0 = u0,

where M ∈ R and σ(t) ∈ C1−q([0, T ]), has the following integral repre-
sentation of solution

u(t) = Γ(q)u0eq(−Mt) + [eq(−Mx) ∗ σ(x)](t),

where

(g ∗ f)(t) =

∫ t

0
g(t− x)f(x) dx,

and

eq(λz) = zq−1Eq, q(λz
q) = zq−1

∞∑
k=0

λk
zqk

Γ((k + 1)q)
,

where Eq, q =
∞∑
k=0

tk

Γ((k + 1)q)
, is Mittag-Leffler function of two param-

eter.

Lemma 2.7. [31] Suppose that u(t) ∈ Cq
1−q([0, T ]) then the linear

initial value problem

(D2qu)(t) +N(Dqu)(t) +Mu(t) = σ(t), t ∈ (0, T ]

t1−qu(t)|t=0 = u0, t
1−qDqu(t)|t=0 = u1,(2.4)
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where M, N ∈ R are constants, N2 > 4M and σ(t) ∈ C1−q([0, T ]), has
the following representation of solution

u(t) = Γ(q)u0eq(λ2t) + Γ(q)(u1 − λ2u0)[eq(λ2x) ∗ eq(λ1x)](t)

+ [eq(λ2x) ∗ eq(λ1x) ∗ σ(x)](t),(2.5)

where

λ1 =
−N +

√
N2 − 4M

2
, λ2 =

−N −
√
N2 − 4M

2
≤ 0.

Lemma 2.8. [31]

[eq(λ2x)∗eq(λ1x)](t) = [eq(λ1x)∗eq(λ2x)](t) =
1

λ1 − λ2
[eq(λ1x)−eq(λ2x)](t).

Lemma 2.9. Comparison result [31] If u(t) ∈ C1−q([0, T ]) and satis-
fies the relation

Dqu(t) +Mu(t) ≥ 0, t ∈ (0, T ], t1−qu(t)|t=0 ≥ 0,

where M ∈ R is a constant. Then u(t) ≥ 0, t ∈ (0, T ].

Lemma 2.10. Comparison result [31] If u(t) ∈ Cq
1−q([0, T ]) and sat-

isfies the relation (D2qu)(t) + N(Dqu)(t) + Mu(t) = σ(t) ≥ 0, t ∈
(0, T ], t1−qu(t)|t=0 = u0 ≥ 0, t1−qDqu(t)|t=0 = u1 ≥ 0, where N, M ∈ R
, N2 > 4M are constants such that λ1 = −N+

√
N2−4M
2 ≥ 0 > λ2 =

−N−
√
N2−4M
2 . Then u(t) ≥ 0, t ∈ (0, T ].

3. Main Results

In this section, we prove the existence and uniqueness theorem of
solution for IVP (1.1)− (1.2).

Theorem 3.1. Assume that

(i) v0i = (v01, v
0
2) and w0

i = (w0
1, w

0
2) in Cq

1−q([0, T ]) are ordered lower

and upper solutions of IVP (1.1)− (1.2) respectively.
(ii) fi ≡ fi(t, u1, u2, D

qu1, D
qu2) ∈ C(J × R4,R),J = [0, T ] satisfies

one-sided Lipschitz condition, i = 1, 2.
(iii) fi ≡ fi(t, u1, u2, Dqu1, D

qu2) are quasi-monotone non-decreasing

then there exist monotone sequences {vni } and {wn
i } such that {vni } →

vi(t), {wn
i } → wi(t) as n → ∞, where v(t) and w(t) are minimal and
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maximal solutions on the ordered interval [v0i , w
0
i ] of IVP (1.1) − (1.2)

and satisfy the monotone property

v0i ≤ v1i ≤ v2i . . . ≤ vni ≤ vi ≤ wi ≤ wn
i ≤ . . . ≤ w1

i ≤ w0
i , i = 1, 2.

Proof. For any ηi(t) = (η1, η2) ∈ Ω. Consider the linear initial value
problem

(D2qui)(t) = fi(t, η1, η2, D
qη1, D

qη2) +Ni(D
qηi −Dqui) +Mi(ηi − ui)

= σ(ηi)

t1−qui(t)|t=0 = u0i , t
1−q(Dqui)(t)|t=0 = u1i , i = 1, 2.

(3.1)

It is clear that, by Lemma 2.7 and 2.8, linear initial value problem (3.1)
has exactly one solution ui ∈ Cq

1−q([0, T ]) and whose integral represen-

tation is as in (2.5). Now define

ui(t) = A[ηi, µ]

= Γ(q)u0i eq(λ
i
2t) + Γ(q)(u1i − λi2u0i )[eq(λi2x) ∗ eq(λi1x)](t)+

[eq(λ
i
2x) ∗ eq(λi1x) ∗ σ(ηi)(x)](t),

where

λi1 =
−Ni +

√
N2

i − 4Mi

2
≥ 0 > λi2 =

−Ni −
√
N2

i − 4Mi

2
.

For each ηi(t) = (η1, η2) and µi(t) = (µ1, µ2) in Ω such that v0i (0) ≤
ηi(t) ≤ µi(t) ≤ w0

i (0). We define an operator A from [v0i , w
0
i ] into

Cq
1−q([0, T ]) and ηi is solution of the IVP (1.1)-(1.2) if and only if ηi =

A[ηi, µ] and µi is solution of the IVP (1.1)-(1.2) if and only if µi =
A[η, µi]. First we prove that

(a) v0i ≤ A[v0i , w
0
i ], w0

i ≥ A[w0
i , v

0
i ]

(b) A possesses the monotone property on the segment Ω = [v0i , w
0
i ].

To prove (a), set A[v0i , w
0
i ] = v1i (t) = (v11, v

1
2), where v1i (t) is the unique

solution of system (3.1) and set pi(t) = v0i (t) − v1i (t) with ηi = v0i (t).
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Observe that

D2qpi(t) = D2qv0i (t)−D2qv1i (t)

≤ fi(t, v01, v02, Dqv01, D
qv02)− fi(t, v01, v02, Dqv01, D

qv02)

−Ni(D
qv0i −Dqv1i )−Mi(v

0
i − v1i )

= −Ni(D
qv0i −Dqv1i )−Mi(v

0
i − v1i )

= −Ni(D
qpi)(t)−Mi(pi)(t).

Thus D2qpi(t) ≤ −Ni(D
qpi)(t)−Mi(pi)(t)

and t1−qpi(t)|t=0 = t1−qv0i (t)|t=0 − t1−qv1i (t)|t=0 ≤ 0

t1−q(Dqpi)(t)|t=0 = t1−q(Dqv0i )(t)|t=0 − t1−q(Dqv1)i(t)|t=0 ≤ 0.

By Lemma 2.10, we have pi(t) ≤ 0 ⇒ v0i (t) − v1i (t) ≤ 0 ⇒ v0i (t) ≤
v1i (t) = A[v0i , w

0
i ]. To prove that w0

i ≥ A[w0
i , v

0
i ], set A[w0

i , v
0
i ] = w1

i ,
where w1

i is the unique solution of system (3.1). Set pi(t) = w0
i − w1

i

with ηi = w0
i (t).

D2qpi(t) = D2qw0
i (t)−D2qw1

i (t)

≥ fi(t, w0
1, w

0
2, D

qw0
1, D

qw0
2)− fi(t, w0

1, w
0
2, D

qw0
1, D

qw0
2)

−Ni(D
qw0

i −Dqw1
i )−Mi(w

0
i − w1

i )

= −Ni(D
qw0

i −Dqw1
i )−Mi(w

0
i − w1

i ).

Thus D2qpi(t) ≥ −Ni(D
qpi)−Mi(pi),

and t1−qpi(t)|t=0 = t1−qw0
i (t)|t=0 − t1−qw1

i (t)|t=0 ≥ 0

t1−q(Dqpi)(t)|t=0 = t1−q(Dqw0
i )(t)|t=0 − t1−q(Dqw1)i(t)|t=0 ≥ 0.

By Lemma 2.10, we have pi(t) ≥ 0 ⇒ w0
i (t) − w1

i (t) ≥ 0 ⇒ w0
i (t) ≥

w1
i (t) = A[w0

i , v
0
i ].

Now to prove (b), if v0i ≤ ηi ≤ µi ≤ w0
i , then prove A[ηi, µ] ≤ A[η, µi],

where A[ηi, µ] = ui = (u1i , u
2
i ) and A[η, µi] = vi = (v1i , v

2
i ). Consider
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pi(t) = ui(t)− vi(t) then observe that

(D2qpi)(t) = (D2qui)(t)− (D2qvi)(t)

= fi(t, η1, η2, D
qη1, D

qη2)− fi(t, µ1, µ2, Dqµ1, D
qµ2)+

Ni(D
qηi −Dqui) +Mi(ηi − ui)−

Ni(D
qµi −Dqvi)−Mi(µi − vi)

≤ Ni(D
qµi −Dqηi) +Mi(µi − ηi) +Ni(D

qηi −Dqui)+

Mi(ηi − ui)−Ni(D
qµi −Dqvi)−Mi(µi − vi)

= Ni(D
qvi −Dqui) +Mi(vi − ui).

Thus (D2qpi)(t) ≤ −Ni(D
qpi)(t)−Mi(pi)(t)

t1−qpi(t)|t=0 = t1−qui(t)|t=0 − t1−qvi(t)|t=0 = u0i − v0i ≤ 0

t1−q(Dqpi)(t)|t=0 = t1−q(Dqui)(t)|t=0 − t1−q(Dqvi)(t)|t=0 = u1i − v1i ≤ 0.

By Lemma 2.10, pi(t) ≤ 0 ⇒ ui(t) ≤ vi(t). Hence A[ηi, µ] ≤ A[η, µi].
Thus the operator A possesses the monotone property on Ω = [v0i , w

0
i ].

Define the sequences {vni (t)} and {wn
i (t)} by vni = A[vn−1i , wn−1

i ] and

wn
i = A[wn−1

i , vn−1i ]. Then, we obtain v0i ≤ v1i ≤ v2i . . . ≤ vni ≤ vi ≤
wi ≤ wn

i ≤ . . . ≤ w1
i ≤ w0

i . Let Pi = {vni : n ∈ N}, Qi = {wn
i : n ∈ N}.

We show that the set Pi, Qi is relatively compact in Cq
1−q([0, T ]). For

any ηi(t) ∈ Ω by definition of lower and upper solutions and Lipschitz
condition, we have

(D2qv0i )(t) +Ni(D
qv0i )(t) +Miv

0
i (t) ≤ fi(t, v01, v02, Dqv01, D

qv02)+

Ni(D
qv0i )(t) +Mi(v

0
i )(t)

≤ fi(t, η1, η2, Dqη1, D
qη2) +Ni(D

qηi)(t) +Mi(ηi)(t)

≤ fi(t , w0
1, w

0
2, D

qw0
1, D

qw0
2) +Ni(D

qw0
i )(t) +Mi(w

0
i )(t)

≤ (D2qw0
i )(t) +Ni(D

qw0
i )(t) +Miw

0
i (t).

Let Pi, Ω in Cq
1−q([0, T ]) be bounded sets. Furthermore

σi(ηi(t)) = fi(t, η1, η2, D
qη1, D

qη2) +Ni(D
qηi)(t) +Mi(ηi)(t) : ηi ∈ Ω

is also bounded set. Hence, there exist a constant Li > 0 such that

||σi(vni )(t)|| = max
0≤t≤T

|t1−qσi(vni )(t)| ≤ Li

⇔ |σi(vni )(t)| ≤ Lit
1−q, t ∈ (0, T ].(3.2)
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On the other hand {vni : n ∈ N} satisfy

vni = Γ(q)u0eq(λ
i
2t) + Γ(q)(ui1 − λi2ui0)[eq(λi2x) ∗ eq(λi1x)](t)

+ [eq(λ
i
2x) ∗ eq(λi1x) ∗ σ(vn−1i )](t).(3.3)

Let

G(λij , t) = t1−q[eq(λ
i
jt) ∗ σ(vn−1i )](t)], t ∈ (0, T ], i = 1, 2.

Without loss of generality, assume that 0 ≤ t1 ≤ t2 ≤ T . Since λi2 <
0 ≤ λi1, we have

|G(λi2, t1)−G(λi2, t2)| ≤
LiΓ(q)

|λi1|
|Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2)|+

2LiΓ(q)

Γ(2q)
(t2 − t1)q,(3.4)

|G(λi1, t1)−G(λi1, t2)| ≤ (
LiΓ(q)

|λi1|
+
LiT

q

q
)|Eq,q(λ

i
1t

q
1)− Eq,q(λ

i
1t

q
2)|

+
2LiΓ(q)

Γ(2q)
Eq,q(λ

i
1T

q)(t2 − t1)q.

(3.5)

From Eq,q(t) ∈ C([0, T ]) and ∀ε > 0 ∃ δ = δ(ε), when |t2 − t1| < δ , we
have

|Eq,q(λ
i
1t

q
1)− Eq,q(λ

i
1t

q
2)| <

ε

6L1
i

,(3.6)

|Eq,q(λ
i
2t

q
1)− Eq,q(λ

i
2t

q
2)| <

ε

6L2
i

,(3.7)

(t2 − t1)q <
ε

6L3
i

,(3.8)

where

L1
i = max

{
Γ(q)|(u1i − λi2u0i )λi1|

|λi1 − λi2|
,

Li

|λi1 − λi2||λi1|
[Γ2(q) +

|λi1|T q

q
]

}
,

L2
i = max

{
Γ(q)|u0i |,

Γ(q)|(u1i − λi2u0i )λi1|
|λi1 − λi2|

,

Li

|λi1 − λi2||λi1|
[Γ2(q) +

|λi1|T q

q
]

}
,

L3
i =

2LiΓ(q)

Γ(2q)|λi1 − λi2|
[1 + Eq,q(λ

i
1T

q)].
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Using (3.4) to (3.8), we obtain

|t1−q1 vni (t1)− t1−q2 vni (t2)| =
∣∣∣∣Γ(q)u0i

[
t1−q1 eq(λ

i
2t1)− t

1−q
2 eq(λ

i
2t2)

]
+ Γ(q)(u1i − λi2u0i )

[
t1−q1 eq(λ

i
2t1) ∗ eq(λi1t1)−

t1−q2 eq(λ
i
2t2) ∗ eq(λi1t2)

]
+

[
t1−q1 eq(λ

i
2t1) ∗ eq(λi1t1) ∗ σ(vn−1i )(t1)

− t1−q2 eq(λ
i
2t2) ∗ eq(λi1t2) ∗ σ(vn−1i )(t2)

]∣∣∣∣
=

∣∣∣∣Γ(q)u0i [Eq,q(λ
i
2t

q
1)− Eq,q(λ

i
2t

q
2)]

+
Γ(q)(u1i − λi2u0i )

λi1 − λi2

[
(Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2))+

(Eq,q(λ
i
1t

q
1)− Eq,q(λ

i
1t

q
2))

]
+

1

λi1 − λi2

{
[t1−q1 eq(λ

i
2t1) ∗ σ(vn−1i )(t1)−

t1−q2 eq(λ
i
2t2) ∗ σ(vn−1i )(t2)]

+ [t1−q2 eq(λ
i
1t2) ∗ σ(vn−1i )(t2)− t1−q1 eq(λ

i
1t1) ∗ σ(vn−1i )(t1)]

}∣∣∣∣,
≤ Γ(q)

∣∣u0i ∣∣ |Eq,q(λ
i
2t

q
1)− Eq,q(λ

i
2t

q
2)|

+
Γ(q)|u1i − λi2u0i |
|λi1 − λi2|

[
|(Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2))|+

|(Eq,q(λ
i
1t

q
1)− Eq,q(λ

i
1t

q
2)|
]

+
1

|λi1 − λi2|
|t1−q1 eq(λ

i
2t1) ∗ σ(vn−1i )(t1)−

t1−q2 eq(λ
i
2t2) ∗ σ(vn−1i )(t2)|

+
1

|λi1 − λi2|
|t1−q1 eq(λ

i
1t1) ∗ σ(vn−1i )(t1)−

t1−q2 eq(λ
i
1t2) ∗ σ(vn−1i )(t2)]|,
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≤ Γ(q)|u0i |
[
|Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2)|
]

+
Γ(q)|u1i − λi2u0i |
|λi1 − λi2|

[
|(Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2))|+

|(Eq,q(λ
i
1t

q
1)− Eq,q(λ

i
1t

q
2)|
]

+
LiΓ(q)

|λi1 − λi2||λi1|

[
|Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2)|+

2LiΓ(q)

Γ(2q)|λi1 − λi2|
(t2 − t1)q

]
+

1

|λi1 − λi2|

[
LiΓ(q)

|λi1|
+
LiT

q

q

] [
|Eq,q(λ

i
1t

q
1)− Eq,q(λ

i
1t

q
2)|
]

+
2LiΓ(q)

Γ(2q)|λi1 − λi2|
Eq,q(λ

i
1T

q)(t2 − t1)q,

≤ Γ(q)|u0i |
[
|Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2)|
]

+

Γ(q)|u1i − λi2u0i |
|λi1 − λi2|

[
|(Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2))|+

|Eq,q(λ
i
1t

q
1)− Eq,q(λ

i
1t

q
2)|
]

+
LiΓ(q)

|λi1 − λi2||λi1|

[
Γ(q) + (Γ(q) +

λi1T
q

q
)

]
[
|Eq,q(λ

i
2t

q
1)− Eq,q(λ

i
2t

q
2)|+ |Eq,q(λ

i
1t

q
1)− Eq,q(λ

i
1t

q
2)|
]

+
2LiΓ(q)

Γ(2q)|λi1 − λi2|
[
1 + Eq,q(λ

i
1T

q)
]

(t2 − t1)q,

<
ε

6
+
ε

6
+
ε

6
+
ε

6
+
ε

6
+
ε

6
= ε.

Thus Pi is equi-continuous. Then by Ascoli- Arzela theorem, we con-
clude that Pi is relatively compact set of Cq

1−q([0, T ]). Similarly we

can show that Qi is relatively compact set of Cq
1−q([0, T ]). There-

fore the sequences {vni (t)},{wn
i (t)} converges uniformly to vi(t), wi(t)

respectively on [0, T ]. Then we have point-wise limits limn→∞ v
n
i (t) =

vi(t), limn→∞w
n
i (t) = wi(t), lim

n→∞
Dqvni (t) = Dqvi(t), lim

n→∞
Dqwn

i (t) =

Dqwi(t) t ∈ (0, T ]. Thus by relations (v0i ≤ v1i ≤ v2i ≤ . . .), it
follows that vi(t) and wi(t) satisfy the following monotone property
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v0i ≤ v1i ≤ . . . ≤ vni ≤ vi ≤ wi ≤ wn
i ≤ . . . ≤ w1

i ≤ w0
i ,

Dqv0i ≤ Dqv1i ≤ . . . ≤ Dqvni ≤ . . . ≤ Dqwn
i ≤ . . . ≤ Dqw1

i ≤ Dqw0
i . Now,

we prove that vi(t), wi(t) are respectively minimal and maximal solutions
of initial value problem (1.1)−(1.2). Since fi(i = 1, 2) is continuous then
clearly the function σ(ηi(t)) is continuous and monotone nondecreasing
in vi(t) implies that {σ(vni (t))} converges to σ(vi)(t), t ∈ (0, T ]. Taking
limit as n → ∞ of {vni (t)} and using dominated convergence theorem,
vi(t) satisfies the integral equation

vi(t) = Γ(q)u0i eq(λ
i
2t) + Γ(q)(u1i − λi2u0i )

[
eq(λ

i
2x) ∗ eq(λi1x)

]
(t)+[

eq(λ
i
2x ∗ eq(λi1x)σ(vi)(x)

]
(t).

Thus vi(t) is an integral representation of the solution of IVP (1.1) −
(1.2). By the assumption of the function fi(i = 1, 2) and Lemma 2.7, it
follows that vi(t) is a classical solution of IVP (1.1)− (1.2). This proves
that the lower sequence {vni (t)} converges to a solution vi(t) of IVP
(1.1) − (1.2). Similarly, we can prove that the upper sequence {wn

i (t)}
converges to a solution wi(t) of IVP (1.1)−(1.2) and satisfies the relation
vi(t) ≤ wi(t), i = 1, 2, t ∈ (0, T ]. It follows that the relation
v0i ≤ v1i ≤ v2i . . . ≤ vni ≤ vi ≤ wi ≤ wn

i ≤ . . . ≤ w1
i ≤ w0

i ,
holds as well as vi(t) and wi(t) are minimal and maximal solution of
IVP (1.1) − (1.2) on the sector Ω. Now we prove vi(t) = wi(t), i = 1, 2
, is unique solution of IVP (1.1) − (1.2). It is sufficient to prove that
vi(t) ≥ wi(t), D

qvi(t) ≥ Dqwi(t) t ∈ (0, T ]. For this, we consider ui(t) =
vi(t)−wi(t). Then from IVP (1.1)-(1.2) and above hypothesis, we have

(D2qui)(t) +Ni(D
qui(t) +Miui(t) = (D2qvi)(t)− (D2qwi)(t)+

NiD
qvi(t)−NiD

qwi(t) +Mivi(t)−Miwi(t),

= fi(t, v1, v2, D
qv1, D

qv2)− fi(t, w1, w2, D
qw1, D

qw2)+

Ni(D
qvi −Dqwi) +Mi(vi − wi),

≥ −Ni(D
qvi −Dqwi)−Mi(vi − wi) +Ni(D

qvi −Dqwi)+

Mi(vi − wi) ≥ 0, t ∈ (0, T ],

and t1−qui(t) = 0, t1−q(Dqui)(t) = 0. Then by Lemma 2.10, ui(t) ≥ 0,⇒
vi(t) ≥ wi(t), D

qvi(t) ≥ Dqwi(t) t ∈ (0, T ]. Thus ui(t) = vi(t) = wi(t)
is unique solution of IVP (1.1)− (1.2).

Now we prove uniqueness of solution of the IVP (1.1)− (1.2).

Theorem 3.2. Assume that

(i) v0i and w0
i in Cq

1−q are ordered lower and upper solutions of IVP

(1.1)− (1.2)
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(ii) fi(t, u1, u2, D
qu1, D

qu1) ∈ C(J × R4,R) is quasimonotone non-
decreasing

(iii) fi(t, u1, u2, D
qu1, D

qu1) satisfies both sided Lipschitz condition.

Then the IVP (1.1)− (1.2) has unique solution in the sector [v0i , w
0
i ].

Proof. Observe that

−Ni(D
qui −Dqu∗i )−Mi(ui − u∗i ) ≤ fi(t, u1, u2, Dqu1, D

qu2)−
fi(t, u

∗
1, u

∗
2, D

qu∗1, D
qu∗2)

≤ Ni(D
qui −Dqu∗i ) +Mi(ui − u∗i )

for v0i ≤ u∗i ≤ ui ≤ w0
i which follows from (2.3). Then the Theorem

3.1 implies that the problem (1.1)− (1.2) has unique solution in sector
[v0i , w

0
i ].

4. Conclusion

Existence and uniqueness of solutions of nonlinear system of initial
value problems is obtained using monotone method coupled with lower
and upper solutions.
Acknowledgement. Authors are very much thankful to the anony-
mous referee for careful reading of the paper and for their useful com-
ments.
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